Identifying periodically expressed transcripts in microarray time series data
نویسندگان
چکیده
MOTIVATION Microarray experiments are now routinely used to collect large-scale time series data, for example to monitor gene expression during the cell cycle. Statistical analysis of this data poses many challenges, one being that it is hard to identify correctly the subset of genes with a clear periodic signature. This has lead to a controversial argument with regard to the suitability of both available methods and current microarray data. METHODS We introduce two simple but efficient statistical methods for signal detection and gene selection in gene expression time series data. First, we suggest the average periodogram as an exploratory device for graphical assessment of the presence of periodic transcripts in the data. Second, we describe an exact statistical test to identify periodically expressed genes that allows one to distinguish periodic from purely random processes. This identification method is based on the so-called g-statistic and uses the false discovery rate approach to multiple testing. RESULTS Using simulated data it is shown that the suggested method is capable of identifying cell-cycle-activated genes in a gene expression data set even if the number of the cyclic genes is very small and regardless the presence of a dominant non-periodic component in the data. Subsequently, we re-examine 12 large microarray time series data sets (in part controversially discussed) from yeast, human fibroblast, human HeLa and bacterial cells. Based on the statistical analysis it is found that a majority of these data sets contained little or no statistical significant evidence for genes with periodic variation linked to cell cycle regulation. On the other hand, for the remaining data the method extends the catalog of previously known cell-cycle-specific transcripts by identifying additional periodic genes not found by other methods. The problem of distinguishing periodicity due to generic cell cycle activity and to artifacts from synchronization is also discussed. AVAILABILITY The approach has been implemented in the R package GeneTS available from http://www.stat.uni-muenchen.de/~strimmer/software.html under the terms of the GNU General Public License.
منابع مشابه
Bayesian Meta-analysis for Identifying Periodically Expressed Genes in Fission Yeast Cell Cycle
The effort to identify genes with periodic expression during the cell cycle from genome-wide microarray time series data has been ongoing for a decade. However, the lack of rigorous modeling of periodic expression as well as the lack of a comprehensive model for integrating information across genes and experiments has impaired the effort for the accurate identification of periodically expressed...
متن کاملModel-based methods for identifying periodically expressed genes based on time course microarray gene expression data
MOTIVATION The expressions of many genes associated with certain periodic biological and cell cycle processes such as circadian rhythm regulation are known to be rhythmic. Identification of the genes whose time course expressions are synchronized to certain periodic biological process may help to elucidate the molecular basis of many diseases, and these gene products may in turn represent drug ...
متن کاملDetecting Periodic Genes from Irregularly Sampled Gene Expressions: A Comparison Study
Time series microarray measurements of gene expressions have been exploited to discover genes involved in cell cycles. Due to experimental constraints, most microarray observations are obtained through irregular sampling. In this paper three popular spectral analysis schemes, namely, Lomb-Scargle, Capon and missing-data amplitude and phase estimation (MAPES), are compared in terms of their abil...
متن کاملPolynomial model approach for resynchronization analysis of cell-cycle gene expression data
MOTIVATION Identification of genes expressed in a cell-cycle-specific periodical manner is of great interest to understand cyclic systems which play a critical role in many biological processes. However, identification of cell-cycle regulated genes by raw microarray gene expression data directly is complicated by the factor of synchronization loss, thus remains a challenging problem. Decomposin...
متن کاملAre we overestimating the number of cell-cycling genes? The impact of background models for time series data
Periodic processes play fundamental roles in organisms. Prominent examples are the cell cycle and the circadian clock. Microarray array technology has enabled us to screen complete sets of transcripts for possible association with such fundamental periodic processes on a system-wide level. Frequently, quite a large number of genes has been detected as periodically expressed. However, the small ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2004